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In an inertial reference frame, the Eulerian representation of the

inviscid hydrodynamics equations is
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where ¢ is the specific internal energy, w is the fluid velocity, p is the

pressure, p is the density, and G is the mass flux.

are conservation equations for mass and momentum.

An equation for specific kinetic energy is obtained by multiplying

Eq. (3) by w and this gives

apk . 3Gk 9P _
at ' ax Wk~ 0
where K = % wz.

Equations (1) and (3)
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The sum of Eqs. (2) and (4) give a conservation equation for total energy
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The mass flux G is usually given by pw; here we consider an additional

(5)

flux given by the diffusion of mass due, for example, to molecular action or

turbulence and this ¢ is given by



where

In the absence of F, the equations are transformed to a Lagrangian
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Under this operator, mass is conserved in control volumes that move with the

fluid velocity
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In the presence of F we define a new operator
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And note that the two operators are related by
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Using Eq. (9), we transform Eqs. (1)-(3) to the frame of an observer moving

with velocity
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We substitute x for f in Eqs. (8) and (9) to obtain

dx
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The total energy equation is
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We may associate a volume element with Eq. (9) by analogy with the volume

element associated with Eq. (8)
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and note that Egqs. (12) and (18) combine to give
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We now transform to a reference frame that is uniformly accelerating
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In this new frame, Eqs. (12)-(14) become
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and the first integral of Eq. (20) is
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The energy equation becomes
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Using Eqs. (24) and (11), this becomes
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which suggests two new energy terms
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With ¢ and k so defined, the energy equation becomes
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Equation (26) was identified because it can be associated with a source

of turbulent kinetic energy. We could also have ignored this equation by

adding Eqs. (25) and (26)

P %E (p + k) = pgu (28)

and associated ¢ + k with "potential™ energy.

As it is, we associate the change of potential energy (Eq. (25)) with
a mass flux, due to advection and diffusion, in a “gravitational” field. We
note that the diffusive mass flux leads to a change in k. The pgu term
states that fluid rising in our accelerated frame gains potential energy.
Similarly, €luid diffusing upward (g > 0, F > 0) gains potential energy

and loses k-energy.
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Equations (25) and (26) were not known in our original inertial system.

To gain further insight it will be useful to transform them back to the

inertial system.

But first, let us simplify our transformation. We think of transforming
our observer to a coordinate system that is accelerating with the local fluid

*
acceleration, w. Thus we assume
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Equations (21) and (22) remain the same while Eq. (23) becomes

It's not too surprising to find that the acceleration is provided by the

pressure gradient.

To simplify the transformation, we assume that at t = 0 the y and x
coordinate systems coincide and have the same velocity.

Then Eq. (24) becomes

[
u=w-wt

and in the inertial system the potential energy equation is
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Equation (29) gives the rate of change of potential energy in an inertial

system.
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The k-equation transforms back to the inertial system unchanged and we

have

(-3
P st
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which we intuitively know to be zero since we can't create energy merely by
transforming between coordinate system.
We confirm intuition by noting that w - wt = 0; sincew =0 at t = 0 and
since w = constant, w = [ w dt = wt.
From the transformation we have found a previously unknown relation
between mean kinetic energy and acceleration, in the inertial system:
2
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and we restate the newly found energy relation in the inertial system
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